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Graph Theory for Fused Cubic Clusters of Water Dodecamer
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The stable structures of the fused cubic water clustgDjH are examined using graph theoretical techniques
and ab initio calculations. The calculations are obtained by scanning the symmetry of digraph structures of
hydrogen-bond network spanning 12 oxygen atom vertexes. Using tlya Bweorem the cycle index
expressions for 12 vertexes and 20 edges of a cuboid in point-group synibngtise developed. A total of

91 energy-allowed fused cubic structures are obtained, which are classified by 8 point-group symmetries: 1
Don, 25, 5Cs, 1 Dy, 11 Gy, 10C;, 1 C,, and 60C;. An energy level diagram of the structures reveals 14
bands that correspond to 14 unique two-colored graphs derived from the distributions of four free hydrogens
of the cluster.

. Introduction arantos et &’ studied water cluster (}D), overn = 7—
I. Introduct F t t &7 studied water clust 7—18

) monomers using molecular dynamics methods and an empirical
~ Water clusters, especially small water clusters, are of great hotential function for many-body polarization interactions. For
interest due to their role in diverse molecular processes such agH,0),,, they provided two structures in the combinatorial
and RNA? the homogeneous nucleation of water into droplets showed the low-frequency band observed in the millimeter
and ice in radical reactiorishe coexistence of ordered surface yegion, indicating a possible association of stability of these
water and crystallite-like ice structure which are dominantly myiticubic clusters with the peculiar properties of liquid water.
cubic? and stabilization in supramolecular self-assentbly. Day et al?® searched the isomers of water clustersQ
Moreover, small water clusters are simple examples of math- ;o 3 = 6 8 10 12 14. 16. 18 and 20 with simulated

ematical graphs from which information on oxygen and ,pnealing methods combined with the effective fragment
hydrogen connectivities are drawrf potential and HartreeFock ab initio methods. For ()2,
There are several studies directed at understanding thepesides those symmetries for the four tetrameric structures
stability and geometry of the water octamer (), and its mentioned above, they showed another two symmeiEig&h)
other properties such as molecular potential energy m8déls,  and (€,c),. Maheshwary et &° considered more geometries
symmetry and structur®, dimerization}’ thermodynamic including cuboid, fused pentagons, and fused hexagons. They
properties® 2 hydrogen bonding topologyand most recently,  found that a fusion of two cubes wi,gD2g Symmetry (dipole
the confinement of the hydrogen molecule ¥ Experimental  moment 0) to be the most stable. A fused hexameric structure
studies have identified the two almost isoenergetic stable with S symmetry and the fused pentameric structure are less
structures by infrared spectroscoffySome conformers have  stable than the cuboids. Lee et32lcalculated the chemical
been indirectly confirmed in the study of wet electron behaifior.  binding energy of water clusters {8), (n = 2—20) and its
However, only a few studies have been performed on water relation with the cluster size. ThByq structures are slightly
dodecamer, (kD)12, concerning both energy and hydrogen bond lower in binding energy thas, structures for water clusters
network. with 8, 12, 16, and 20 water molecules. They concluded that
The early and relatively systematic work of dodecameric small water clusters composed of mainly planar four membered
water clusters together with water octamer studied by Tsai andrings are more stable, implying the existence of magic numbers
Jordand® applied the TIP4P model, and assigned symmetries to for water clusters with sizes of 4, 8, and 12.
fused cubic structures of @), isomers in a combinatorial The existence of the magic number 12 has been recently
symmetry of two octamers. Besides four tetrameric structures reconfirmed in the experimental studigsof dissociation
(D2d)2, (D26S), (S4)2, and Cic C), there are hexameric  pathways and energetics of $OH.0), for n = 3—-17,
structures, likeSs and D3, and two cage-type structures. With  where blackbody infrared radiative dissociation, sustained off-
the TIP4P-type potential, Wales and Hod§esearched for the  resonance irradiation collisional activated dissociation, infrared
global minimum of water cluster (D), (n = 2—21), and they multiphoton dissociation, and double resonance are examined.
indicated that fom = 12 the global minimum is of the fused The experiment showed that the= 12 cluster is more stable
cubic structure. For comparison with Niese and Magfé/ales than eithern = 11 or 13. This “magic” number hydrate is
and Hodges performed analogous runs using the TIP3P potentiatonsistent with filling of a shell structure at= 12. One such
and showed that fan = 12 the global minimum is based upon structure in which all 12 water molecules are symmetrically
a hexagonal prism, which lies about 1.3 kJ/mol lower than the bonded to SG¥ is identified as a low-energy structure at the
fused cube structurs. B3LYP/6-314++G** level,?8 although this structure is entropi-
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cally disfavored compared to those where one or two water o, € O
molecules occupy a second solvation shell. 0, &3
Studies related to the water dodecamer also include an ab & o o, Top
initio calculation by Lee et & using Mgller-Plesset second- s 2ores
order perturbation theory with the TZ2P- basis set. The most o ey i |7
stable dodecamer is a fused cubic or tetragonal prism skeletal ’ \7 R
structure (Prism 444) with 20 hydrogen bonds (HBs). The lowest e\ s ~ ' Middle
energy structure among these skeletal conformers has HB e € | e Os
orientations with opposite helicities between adjacent tetragonal €1 es
rings. In the wet electron study,Kim et al. performed an ab 0y 0. .0y
initio study on an excess electron bound to the water dodecamer e ™| O . |1
to determine whether the wet electron can be regarded as a o " 0, Bettom

precursor of the fully solvated electron. Among a number of ) o )
possible geometries categorized as unbounded, surface interna.[l:,'gure 1. Right square cuboid with labeled vertexes and directed edges.

. . ’ X he two orientations of each edge are binarily encoded either 1 for the
and partially internal excess-electron states, the Iowest-energyup’ right, and into as shown by arrows or 0 for the down, left, and out.
conformer is predicted to be a structure of a partially internal

state. _ _ Each square corner is occupied by one oxygen atom. A
One can see the discrete AB)i» cluster even in the  connection between any two nearest neighboring oxygen atoms

StabI|I2atI0n and funCtIOﬂIng Of bI0m0|ecu|eS and n deSIgI’lIng |S from the hydrogen atom, Wh|Ch bndges one oxygen and

new materials. One example is as shown in the cavity of gnother by a strong oxygetydrogen (G-H) bond and a weak

polymeric interlinked metallocycles of Nd(lll) or Gd(lll) and @ interactive connection between the bonded hydrogen and
podand ligand? Different than those structures observed before, remaining oxygen (H-0), i.e., forming an oxygenhydrogen

the overall structure of the water cluster can be described as an...oxygen connection (©H-++-0). This is the picture developed

“‘open-cube” octamer buttressed on two sides by two water iy the previous study of smaller water clusters. In such a fully
dimers. Another example is the structural variation from 1D hydrogen-bonded structures there are at most 20 hydrogen
water chain to 2D |ayer by Varying the crystallization condi- bonds. The four remaining hydrogens are in free oxygen
tions* The unique 2D ice layer has great similarity to ige  hydrogen bond or free hydrogen bond for convenience, and
and features a novel @)z ring. The 2D structure of the water  hence these four hydrogens are called dangling hydrogens. Even
cluster is characterized through supramolecular self-assefbly, for such a simple cuboid with the fixed position of only 12
and results from the hydrogen-bonding interactions between gxygen atoms, the number of energetically favorable structures
water molecules. is not known. The remaining part of this paper addresses the
Singer and co-worke?$ have demonstrated that graph problem concerning hydrogen covalent bonds, free hydrogen
theoretical techniques can be of considerable use in the searcthond distributions, and their relationship with the symmetry
for stable arrangements of water clusters. Inspired by the ice representation of the molecular point group. To elucidate this
rules they used graphical techniques to generate a multitude ofproblem, we start by examining the hydrogen bond distribution
local minima for neutral and protonated water clusters using and the number of variations using graph theory.
oriented graph theory. The cubic {Bl)s and dodecahedral We define an oxygen atom as a vertex of a graph, and the
(H20)20 clusters and their protonated analogues are treated asedge of the graph is simply a straight line which is the line
examples. This idea of graph theoretical analysis of water connecting the two nearest neighboring oxygen atom nodes. At
clusters has been previously pursued by Radhakrishnan andhis time the hydrogen between the two oxygen atoms may be
Herndonz® bound to one oxygen or another, and there are only two opposite
In this paper, we present a study of tetramer base®j bonding orientations for each such connections. Therefore, the
structures via optimization in a pool of all oriented graph graph is exactly an oriented graph with an exception that all
structures. The graph is a mathematical right square cuboid withtwo diagonal vertexes in any square and rectangular cycles are
12 nodes, points abstracted from 12 oxygen atoms in water disconnected. The 20 bond orientations determines the number
molecules. Our studies are motivated by the recent work of the of graphs for the cuboid. The numbers of the graphs for such a
catalytic reaction of the radical H& in the presence of water  partially connected and disconnected graph is less than a limit
cluster (HO)2q; and the storage of a hydrogen molecule confined number of the general cubic, unlabeled, connected gtapiits
in the water octame® In section I, the theoretical methods 2n = 12 vertexes,
emphasizing the enumeration of graphs in graph theory. Section
i describes the computat|o_nal procedures wh|§:h_ _comblne the No cupic = 2'(S,[Si]) N Z(S,[S)) 1)
ideas from graph theory, ice rules, and ab initio quantum
chemistry methods. In section 1V, the results are presented in
detail for the structures, geometric parameters, and point-group.
symmetries of the fused cubic water dodecamer. Finally, the
discussion and conclusions are given in section V.

The cycle indexZ2'(S,) enumerates the number ofvertexes
for a symmetry groufs, by Pdya theorem?

nt X

Vv _ 1 n
. Graph Theory Z(S) = n Z I1; Nk - )
S § B
Given 12 oxygen atoms, the right square cuboid we consider
in the present work is prepared with three parallel and equally wherep is for all partitions{j, j2, ..., jn} of n, i.e.
separated squares, top, middle, and bottom, as shown in Figure
1. The middle square may be considered a “fused” square of n
two squares separately from the upper cube (the top and middle Z ijj=n 3)
squares) and the cube below (the middle and bottom squares). =
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TABLE 1: Symmetry Groups, Ordered Energies, and Combinatorial Expressions
no. symmetry order E?(au) Ee?(au) COos STEd no. symmetry order E2(au) Eef (au) cos STEd

1 G 2 —915.0148 0.0000 )(Dz)  (Ill) 47 G 1 —915.0007 0.0141

2 5 4 -915.0143 0.0004 ), (D) 48 C 1 —915.0002 0.0141

3 G 2 —915.0128 0.0020 ). (i) 49 C 1 —915.0002 0.0141

4 G 1 —915.0114 0.0033 Go)'(C) (EJE) 50 C, 1 —915.0002 0.0141

5 G 1 —915.0114 0.0033 GC)(C) (BIB) 51 G 1 —915.0002 0.0141

6 C 1 —915.0109 0.0039 Go)(S) (IEE) 52 C 1 —915.0001 0.0142

7 G 2 —915.0107 0.0041 G)(Cic) (EJIB) 53 C 1  —914.9999 0.0145

8 G 2 —915.0105 0.0042 )(Cy) (I1A) 54 C, 1 —914.9997 0.0146

9 G 2 —915.0103 0.0044 Q)(C)  (BJE) 55 C 1 —914.9996 0.0148

10 G 2 —915.0103 0.0044 @)Cy  (EJIB) 56 C 1 —914.9993 0.0150

1 G 1 —915.0090 0.0058 57 Cy0) 2 —914.9992 0.0152 Qb)'(Cib)’ (EAE)
12 G 1 —915.0088 0.0059 58 C, 1 —914.9987 0.0157

13 G 1 —915.0085 0.0062 59  Cy(0) 2 —914.9986 0.0157 Qb), (BAB)
14 s 4 -915.0085 0.0063 @), (AIA) 60 C, 1 —914.9983 0.0161

15 G 1 —915.0083 0.0064 61 C 1 —914.9983 0.0161

16 Cy0) 2 —915.0081 0.0067 Qa), (EFE) 62 C 1 —914.9983 0.0161

17 G 2 —915.0074 0.0074 Q) (329) 63  Cy0) 2 —914.9980 0.0164 Qb)- (FFF")
18 G 2 —915.0070 0.0078 @)(Da)  (IAA) 64 C, 1 —914.9980 0.0164

19 G 2 —915.0070 0.0077 @), (A1) 65 C 1 —914.9978 0.0165

20 D, 4 —915.0070 0.0078 @), (IA1) 66 C, 1 —914.9975 0.0168

21 ¢ 1 —915.0068 0.0079 67 C 1  —914.9974 0.0169

2 G 1 —915.0067 0.0081 68 C 1  —914.9972 0.0172

23 ¢ 1 —915.0063 0.0085 69 C 1  —914.9970 0.0174

24 G 1 —915.0056 0.0092 70 G 1 —914.9966 0.0177

25 G 1 —915.0053 0.0095 71 G 2 —914.9966 0.0177 @b)(Cib) (EAB)
26 G 1 —915.0052 0.0096 2 G 1 —914.9965 0.0178

27 G 2 —915.0043 0.0105 Qd)(Cid)y (FIF) 73 G 1  —914.9965 0.0179

28 G 1 —915.0042 0.0106 74 G 1 —914.9958 0.0185

29 G 2 —915.0041 0.0106 Ge)(Cie) (FIG) 75 G 1 —914.9958 0.0185

30 G 1 —915.0039 0.0109 76 C 1 —914.9954 0.0189

31 Cy0) 2 —915.0037 0.0111 Qd)(Cd)y (JGJ) 77 C 1 —914.9950 0.0194

32  Da 8 —915.0036 0.0107 D)2 (AA'A) 78 G 2 —914.9930 0.0214 (IMM)
33 ¢ 1 —915.0029 0.0114 79 G 1  —914.9929 0.0214

3 C 1 —915.0029 0.0114 80 C, 1  —914.9927 0.0216

3B G 1 —915.0023 0.0120 8l G 2 —914.9925 0.0218 (JLM)
36 G 1 —915.0022 0.0121 82 C 1  —914.9921 0.0222

37 G 1 —915.0018 0.0126 83 C, 1 —914.9911 0.0232

38 Cy0) 2 9150015 0.0129 ), (GFG) 84 C 1 —914.9905 0.0238

39 ¢ 1 —915.0013 0.0130 85 C, 2 —914.9897 0.0246 Qa)(Da) II'NY)
0 G 2 —915.0013 0.0131 @b)(Cib) (EAB) 86 C 1  —914.9896 0.0247

41 C 1 —915.0012 0.0132 87 Ci 4 —914.9875 0.0269 Qb)- (N'N'N")
2 C 1 —915.0006 0.0137 88 Ci 4 —914.9874 0.0270 @b)(Csa)y (NNN)
43 C 1  —915.0004 0.0140 89 C, 4 —914.9873 0.0270 Ga)'(Ch) (NN'NY)
4 C 1 —915.0003 0.0140 90 Ci 4 —914.9872 0.0271 Qa)(Csa) (N'NNY)
45 C 1 —915.0003 0.0140 91 G, 4 —914.9590 0.0553 Gb)'(Csa) (N'NONT)
6 C 1 —915.0003 0.0140

2 Energies are ordered in the values and increase down to the b&tom E + 915.0148 au® COS: Combinatorial octamer symmetf\STE:
Stacked tetramer expressidrKey: (r) reflection in a plane crossing oxygen atoms of two water molecules and space the two covalent bond pairs
either in or vertical to the plane})(rotation of 90 about a principal axis;"( rotation of 180 about a principal axis; (0) optimized structures.

andi, j;, k, andn are integers and are larger than 0. The cycle and orthorhombic families with the lowest order 2 of symmetry

index formula for the symmetry group witm2= 12 is given C; to the highest order 8 of symmetDpp.

in Supplementary Table 1 and the graph numbers are 4379, in Consider symmetrid., with the highest symmetry order, its

agreement with results by Balaban et“alAt this stage, the cycle index for edgesd is as follows,

graph for the right square cuboid does not include the dangling

hydrogens. It only shows the oxygen topology, e.g., the oxygen Ziz, D4h({ e})=

framework and the existence of one connection between two 1 2 » o . s 6 7 1 5

nearest neighboring oxygehsand the orientation of each 1—6(61 +2e°e, +3e e, +2¢°¢e’ +4e, +4¢g))

connection is undermined. 4)
Next, we enumerate the number of graphs of the cuboid for

a given symmetry of crystallographic point groups. The differ- whereg are cycle variables. Replaciggby 1 + 2x, one may

ence between the right square cuboid and the cube is that thehave the number of graphs accounted for by the edges. From

former does not possesses @igrotation symmetry that the  eq 4 there are 67848 graphs, which show the distribution of

later possesses. The highest rotation operation the cuboid hagdges or covalent hydrogen bond topology for symmBisy

is C4. The cuboid, in a crystallographic sense, is a member of From eq 4 one can see that the number of graphs for edges

the family of tetrahedral three-dimensional objects. In this family decreases with the order, but increases with the number of the

the orders of symmetries are different, from the lowest order 4 vertexes.

of symmetryC, through the highest order 16 of symmeDyj,. Is there a way to classify the huge number of graphs? For a

Another rotation operation i€,, which is in the monoclinic water molecule in the fused cubic cluster, the oxygen atom is
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a donor of two hydrogens or an acceptor of at most two —-1< dq + dq + deK <1 (7
hydrogens. In the graph, these two bonds are either two edges

or one is an edge and one a branch. All vertexes in the graphanq for the four-coordinated vertexes in the middle plane it is
are therefore divided into two types, vertexes with a branch

and vertexes without a branch. Thus, our enumerating problem —2<d.+d. +d. +d. <1 (8)

of considering the dangling hydrogen distributions in the fused q 3 &
cubic water clusters is just the same two-color concept in graph
theory. A cycle index of the vertexes has to be developed for
such a graph for the two coloring problem. For a given point-
group symmetnyDg, the cycle index of vertexes) is

Herei, j, k, | are integer indices. This rule reduces the number
of graphs down to 89367 (comparable to 67848 grapti3ug)f
These 89367 graphs are categorized according to the distribu-
tive property of the net degree of 12 vertexg®,}, n =1, 2,
1 .=+, 12 as labeled in Figure D, equals the sum of in-degree
Zy5 04, (v} = 15 (w2420, 0.2+ 0 0 + 202 0,° + and out-degree for vertax For exampleQ; = de, + e, + e,
6 3 and Os = dg, + dg, + do + dg,. The number of{ O}
4vy + 2000t 420y) (5) distributions,N;or, found using the ice rules is 495, which is
the same as 495 by eq 6 from thélygotheorem. The number
Let v = (f + b)', wheref andb are the two colors for vertexes  of unique structures will be discussed in section V.
with and without a branch, corresponding to the oxygen atoms  To reconstruct a graphic structure based on graph theory
with and without a free hydrogen connection. The cycle index analysis, more information based on physical properties needs

expression is to be considered. To scan all the point-group symmetries of
the dodecamer that satisfy the ice rules, the graph structures
Z;, D4h(f, b) = b2+ 12b" f+ 66b'°f 2+ 22007 f 3 + above are us_ed as the starting poi_nt to obtgi_n a best guess
8.4 .5 6.6 5.7 geometry. This is done by assigning specific geometrical
495b°f "+ 792b"f 7 + 924b°f * + 7920 f © + parameters to thB, graphs, which are of the highest order in

495b* 8+ 220b° f° + 66 b° 10+ 12b f* + 2 (6) the tetrahedral family. For example, suppose the oxygen
hydrogen bond length is 0.85 A with the hydrogen linearly

There are only four vertexes (oxygens), which have a branch targeting at a neighboring oxygen. The two neighboring
(connect dangling hydrogens}?, and the remaining eight  oxygen—oxygen separation is 2.8 A. The dihedral angle to fix
vertexes (oxygens) do not have a branch (do not connecta dangling hydrogen connecting to one of the oxygen atoms in
dangling hydrogensh®. The combination of them for the cuboid  the top and bottom planes is 33or the middle plane, it is
produces the terrb® f4. From eq 6, we obtain a total of 495 18C°. The reason for starting with thBs, symmetry is to
unique classes of such hydrogen networks for those graphs. Hereonstruct a perfect geometry to ensure a maximal searching of
the hydrogen network is an overview of the whole cluster with the highest symmetrical structures of the cluster.
all hydrogens bounded, although the orientation of hydrogens The guess geometry is used as input into the quantum
in the hydrogen bonds is not known. From the analysis above, chemistry optimizatiori? To optimize all graph structures, the
we have a new method, using the free hydrogen bond distribu- semiempirical PM3 method is used initially. This is a re-
tions, to categorize the structure of fused cubic water clusters. parametrization method of the modified neglect of diatomic
We will revisit the distribution of free hydrogens in calculations overlap, MNDO, in which the AM1 (Austin model 1) forfh
in section V. of the core-core interaction is used. For water moleculgoH

It should be emphasized that those cycle indices calculatedthe PM3 gives bond length and angle 0.95 A and 107.7
above are based on théla theorent? It provides an upper respectively, and the corresponding Hartr€éeck results (using
limit to the numbers of both the oxygen topology and the 6-31+G(d,p) basis set throughout this paper) are 0.94 A and
hydrogen network on mathematical grounds, but it does not 106.C°. Any of the 89367 graphs that cannot be optimized by

involve the ice rules and the way graphs are constructed. the PM3 method are discarded. After this step, 885 graph
structures are obtained. The Hartrdeck single-point calcula-
Ill. Numerical Methods tion is used to scan and extract all energetically unique

g structures, e.g., only keeping one representative for those
isoenergetic structures at the Hartrdeock level (energy
numerical accuracy I8 atomic units or au throughout this

Let us start by defining the degree of a vertex. It is define
as the number of connections to all neighboring vertexes. For

an oriented graph, in-degree is the number of the connections . .
grap d paper). This method resulted in 146 graphs. Next both Hartree

pointed to the vertex, and out-degree is the number of the K and density f onal th hod q o
remaining opposite connections. The ice rule claims that the F0Ck and density functional theory methods are used to optimize
the remaining structures. Frequency calculations are then

difference between in-degree and out-degree is not larger than .
1 in three-coordinate connections and is 0 in four-coordinate Performed. In the post HF calculations, the Matiélesset
connections. second-order (MP2) method is used to account for the electron

To construct the distinct graphs, each edge in a cuboid graphcorrelation effect. At the MP2 level, 91 energetically unique
is binary encoded, e= 1 are for up, right, and into directions ~ Structures are found.
and ¢ = 0 for down, left, and out direction as shown in Figure
1. Herei =1, 2, ..., 20. This binary encoding provides another
upper limit of the number of all graphs for the edges of the  A. Overview of Geometric Structures.In Figure 2, we show
cuboid inC; symmetry, 20 = 1048576, no matter what vertex three-dimensional structures in the ball-stick representation for
is the starting oné= 1. Figure 1 is the graph for afle} = 1. selected structures of fused cubic (32 (all 91 unique
For eache which is 1 or 0, its degree may lig = + 1 for structures can be found in the Supporting Information, Figures
into a vertex or—1 for out of the vertex. Hence, for the three- 1—6). The large black balls represent oxygen atoms, the small
coordinated vertexes in the top and bottom planes of the figure,gray balls are hydrogen atoms, and the gray sticks refer to
the ice rule may be expressed in covalent hydrogen bonds. The figure inserts are arranged from

IV. Structures and Symmetries
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3 J 1 » " structures starting from the corresponding structures listed in the left

column. Note that each tetramer provides at most two planes for
Cy{40) Cy(50) C;(60) tetramet-tetramer arrangements in I?Jlodecamers. P
Figure 2. Selected fused cubic water dodecamer structures in the ball-
stick representation. The large black balls represent oxygen atoms, thethe one in symmetrid,, where the smallest angle is 136 he
small gray balls are for hydrogen atoms, and the gray sticks refer to optimized oxyger-oxygen separations range between 2.820 and
the covalent hydrogen bonds. Symmetries Bsg Si, Cs, D2, C2(0). 2.850 A is about 0.070 A shorter than the oxygexygen
Here the principal axis oF; is the diagonal line crossing two oxygen L .
(o) atoms of the middle tetramer (see Figure 1). separation in the water d'me'," . .
In contrast to the large variations of<M---O connections,
which may show water molecule and molecule interactions,
left to right, row by row down to the bottom of a figure and there are minor changes in the stretching anglelOH, of a
grouped in terms of symmetries. In the molecular point-group water molecule. Its average value is 105.dnly 1.4 smaller

representation the symmetries &g, S, C4, D2, Cy, Cj, Cs, than the gas-phase value. We also checked the angle for the
andC,, and their symmetry ordetsare 8, 4, 4, 4,2, 2, 2, and  three neighboring oxygen§]O0O0. It ranges about3° about
1, respectivelyDy, is removed by the ice rules. 90 for all symmetries with an exception Bf, symmetry where

Similarly, in Table 1, we list symmetries in columns 2 and the range ist7°. Table 2 includes all the average data within
9, symmetry orders in columns 3 and 10, and the absolute energyeach point group symmetry.
values in columns 4 and 11. In columns 5 and 12, the energies Now, let us examine the overall characteristic of the 91
for all structures are ordered starting with the lowest one. structures (See the Supporting Information).dpsymmetry,
Following previous work827.28 3 combinatorial symmetry 8 isomers labeled bZ;(N) with N = 22, 25, 26, 44, 46, 51,
expression is applied based on information from the water 53, and 58, are composed of two loosely interacting water
octamer case. In columns 6 and 13, we use a simpler expressiomimers and a disturbed cubic water octamer. The remaining 83
in terms of stacking arrangement of the top, middle, and bottom isomers are of cuboidal structures. For some of them, particularly
tetramers that have several fundamental configurations shownthose withC,, C;, andC; symmetry, one can see turns at the
in Figures 3 and 4. All of the energy and symmetry information fusing plane, translations between top and bottom tetramers,

are listed separately in the Supporting Information. and obvious changes in shape comparing them with water
The electronic energy optimization compresses the graphic octamers® As a contrast, each of the top, middle, and bottom

structures considerably by turning straight line-B---O tetramers in all 83 isomers almost maintains a planar shape.

connection to form an obtuse angléPHO. In the G-H---O These distinctions emphasize both the fusing connection between

connection, G-H is the covalent bond and has an average length two shaped octamers and the stacking arrangement among three
of 1.0 A, 0.035 A longer than the length of the free hydrogen tetramers.

bonds, 0.964 A. The weak interactive connection:-@, i.e., In Figures 3 and 4, we show the tetramers structures which
one of the hydrogens from one water molecule and the oxygencan be classified into three types according to the connectivity
from the neighboring water molecule, has an average length of of oxygen sites and dangling hydrogens, i.e., the four hydrogen
1.896 A, nearly two times the ©©H bond length. The obtuse  atoms are equivalently shared by two diagonal oxygen atoms,
angle[1OHO is approximately 163 2° for all structures except  given in part A in Figure 3; shared by three oxygen atoms in
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TABLE 2: Average Values of Geometric Parameters in
Each Point-Group Symmetry

symmetry Lo L5 Do OHOH [OOHO [OOO
Dan 0.964 0.984 2.834 106.531 155.125 88.742
S 0.991 0.964 2.823 105.444 159.180 92.759
C, 0.983 0.965 2.896 104.912 163.931 90.066
D, 0.992 0.965 2.820 105.898 162.812 97.335
Cy(o) 0.991 0.964 2.837 105.760 160.975 93.648
CH 0.991 0.964 2.835 105.719 160.192 90.001
Ci 0.999 0.964 2.840 105.296 161.934 93.216
Cs 0.994 0.965 2.851 106.123 162.011 89.814
C: 1.017 0.963 2.847 105.374 162.321 93.114
alon: Length of the covalent hydrogen bond in an oxygen

hydrogen ---oxygen connectior LfOH: Covalent bond length be-
tween a dangling hydrogen and an oxygen atbBeo: Distance
between two oxygen atoms in an oxygemydrogen---oxygen con-
nection.d C,: A 2-fold rotation group with its principal axis across
the center of three tetramer plan€<C;(0): A 2-fold rotation group

with the principal operation axis across two diagonal oxygen atoms of

the middle tetramer (Figure 1).

two neighboring lateral sides, parts-Bl; and one-to-one shared
by the four oxygens atoms, parts-N. These unoptimized
tetramers are listed in the left-hand column of Figures 3 and 4. columns 6 and 7 (and columns 13 and 14) for all structures

In Figures 3 and 4, we also list the optimized tetramers in with symmetry orders larger than 1. The structures and the
the right column. One will see that only the tetrameric structures corresponding symmetries for the first 10 lowest energies are
A, 1, J, K, and N energetically maintain the unoptimized spatial analyzed. Moreover, within each mentioned symmetry the
configurations of the atoms. Tetramers B, C, D, E, F, G, L, remaining structures are introduced.

and M are not stable and transfer to stable configurations that
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Figure 5. The 14 structures of the cubic water octamers. Note that
each cube provides three orientations and at most six tetrameric planes
for fusing two octamers.

in other tetramers, |, J, K, and N, one oxygen holds one dangling
hydrogen. Tetramers K and N are different in the chirality of
hydrogen bonds of their tetrameric rings. In tetramer |, two
equally oriented dangling hydrogens are diagonal, but in tetramer
J they are lateral.

B. Symmetry for the First 10 Ground-State Structures.

In the 91 unique structures, there are 31 symmetrical structures
and 60 nonsymmetrical structures (see Figures in the
Supporting Information). For exampl€,(2) is assigned to a
structure that possesggssymmetry with the second low energy
level in the symmetry. Table 1 shows the ground-state energy
for all isomers with symmetry information. In the following, a
detailed description is given of the symmetries for the first 10
structures, which are of the lowest energies. Their point group
symmetries ar€,, &, Cj, andC,. We then complete this section
with details of the structures for the remaining symmeties

Cy4, Dy, and C.

Before the structures and symmetries are described, it is
important to mention that using a set of the tetramer-based labels
do not produce symmetry information but supplement more
fundamental information on stacking arrangements. The stacking
arrangement information is important in constructing larger
fused cubic clusters. As indicated before, the turns and relative
translation between two tetrameric planes are observed in
dodecameric (see Supporting Information) and even octameric
structures (Figure 5). Table 1 provides the combinatorial
symmetry expressions and three tetrameric arrangements in

C, symmetnhas an order of 2 and can be divided into two

are the optimized results of tetramers |, J, and K. The exceptiontypes according to the principal axis direction, one with its axis
is tetramer H, which changes to a nontetrameric structure. Foracross the centers of three tetramer planes, and another with
tetramer A, each oxygen shares two dangling hydrogens while the axis across two diagonal oxygen (0) atoms of the middle
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tetramer. We kee,(N) for the first and applyC,(No) for the
second, wher#l is the index. There are five structuresGa(N)
and six structures il2(No).

In the C, symmetry the five structures af&(1), Cx(2), ...,
C2(5). TheCy(2) structure has the lowest energ®15.0148 au
over all 91 structures. The energy value is listed in the first
row, column 4 in Table 1. For simplicity, one may consider
this isomer as two fused octamers of dieand oneD,y and
both share tetramer | (as shown in Figure 4), though I&gre
andDygy octameric structures are not respectively equivalent to
the optimized octamers in Figure 5. According to the previous
work 16:27.28jts combinatorial symmetry is expressedd)(S).
Viewed alternatively, this isomer includes the top, middle, and

Shi et al.

There is also ai®y(2) structure, which is stacked by twiy
octamers, €y),, or three tetramers (AIA). It has an energy of
—915.0085 au, this is higher than t@g(1) structure by 0.0063
au or 3.94 kcal/mol. All data are listed in Table 1.

C; symmetnynvolves a total of 60 structures and contributes
a structure at the fourth lowest energy. The structure includes
three stacked tetramers (EJE) or two fused octan@d'(Cs).

The fifth lowest energy i€1(2) with structure Cic)(Cy) and

its three stacked tetramers are BJBy(1) and Ci(2) are
structures with equal energies915.0114 au. They are enan-
tiomeric pairs, one of them is a nonsuperimposable mirror image
of the other. Here the mirror plane crosses the oxygen atoms of
two water molecules, one in the top tetramer and one in the

bottom tetrameric layers via four hydrogen bonds between the bottom tetramer. The mirror is symmetrical about the covalent
top and the middle and another four bonds between the middlebonds of each of the two water molecules. From the atom

and the bottom. With the labels given in Figures 3 and 4, we

atom connection geometries and isoenergetic property one may

order the top, middle, and bottom tetramers in parentheses, sdind other structure pairs with enantiomeric symmetry in Table

then theCy(1) structure is'll. Here ther over tetramer | means

1: 45th and 46th, 49th and 50th, and 61st and 62nd. The small

a reflection in a plane perpendicular to the tetramer plane anddifferences (less than 10 are thought to be from numerical

crossing the oxygen atoms of two diagonal water molecules.
For the tetramer, this reflection operation is also equivalent to
an operation reversing the chirality of a ring defined by four
oxygen to hydrogen connections. It is the reflection that the
chirality of the top tetramer is different from that of the middle
and bottom tetramers and that the whGlg1) structure is of a
net dipole moment 0.0017 D or 0.0007 au along its principal
axis.

The second lowest energy is frdda(2) symmetry which may
be stacked with tw& octamers, $),, or three | tetramers, Il
It has an energy 0f915.0128 au as given in the third row in
Table 1, higher than the energy 6§(1) by 0.0020 au or 1.24
kcal/mol. The structure has a net dipole moment along the
principal axis, 0.46 D or 0.18 au, 250 times larger than that of
the Cy(1) structure. The third lowest energy is given on the
eighth row in column 4, Table 1, and is of symme@y(3). Its
energy is—915.0106 au and the dipole moment 0.28 D. Its
combinatorial expressions arg)(Cz) and IIA. The remaining
two structures inC, symmetry areCy(4), which is simply
expressed in@,)(D2g) and IAA, andCy(5) in (C4a)"(D2g)" and
II'N". Herer over an octamer also means the reflection in a
plane crossing the oxygen atoms of two diagonal water

processes with different starting geometries).

The C4(1) and C4(2) structures are followed by structure
Ci(3), which is the sixth levek-915.0109 au, higher tha®y(2)
by 0.0035 au or 2.17 kcal/mol, and it may be seen as an IEE
tetrameric stacker o1;c)(S;) octameric stacker.

Ci symmetryis characterized with its inversion operation.
There are 1@; unique structures and they contribute the seventh
lowest energy level in Table 1. Its symmetryGg1) in Figure
2. In the combinatorial expression it i€4€)"(C;c) from Figure
5 and EJB from Figures 3 and 4. If the chirality of hydrogen
bonds of its middle tetramer is reversed, then another structure
with higher energy is obtained. Its symmetry i(2}. We
designate this structur€f'(Cs) and BJE.

Furthermore, starting from structurg(Q and if taking an
atomic reflection in a plane across the centers of two water
molecules, which is in the top and bottom tetrameric planes
and on the diagonal position, then structuré3Lis obtained,
the 10th energy level. Its combining structure &)(Cy)", and
three tetramers EJB. Hencg(Q) and G(3) are of energies
—915.0103 and—915.0103 au respectively. Although their
energy difference is smaller than ¥0(see Table 1), {1) is
not an enantiomer of {(3) because the inversion operation is

molecules as defined before for the tetramer case, but the twoimproper. Gsymmetry has seven higher energy structures. The
oxygen atoms are not coplanar. The reflection plane is oriented 17th is a combination of (€2 and JJJ. Results for the 19th,
by two lines joining the two hydrogen atoms in each of the 27th, 29th, 40th, 78th, and 81th energy levels are given in Table
water molecules. The two lines are either vertical to the plane 1.

or one of them in plane and another vertical to the plane. For
simplicity we user for one of the six reflection planes in the
octameric cube.

S, symmetnhas an order of 4. There are two unigue structures
for this symmetry S4(1) andSy(2). TheSy(1) structure is of the
second lowest energy level, as shown in Table-215.0143
au. Itis higher than the energy of tlig(1) symmetry by 0.0004
au or 0.28 kcal/mol. The total dipole moment for tBg1)
structure is zero. Compared to each other,$i{&) andCx(2)
structures both apparently are of the same two stacked
octamers and three stacked | tetramers. However,SifE
symmetry includes a/2 rotation followed by a reflection in
the plane perpendicular to the axis of the rotation wki€?)
symmetry includes only a rotation. Hence the top and bottom
tetramers in thesy(1) structure both are symmetrically com-

C. Symmetry for the High Energy State Structures.The
following are the structural and energetic description of the
remaining symmetried),, Do, C4, andCe.

D, symmetryhas an order of 4. In this symmetry there is
only one unique structure in a combinatorial symmety)',
with three tetramers (lAl). Here(p)" is a mirror image of
octamelC, with respect to a plane involving two pairs of oxygen
atoms of two diagonal water molecules in fBgcube. TheD,
structure has an energy 6015.0070 au that is the 20th level.

D2an symmetrys of the highest order 8 in all stable structures,
but its energy-915.0036 au is not the lowest. It is about 0.0112
au or 7.00 kcal/mol higher than the lowest energ915.0148
au of symmetryCy(1). This energy is numbered as the 32nd
level. and its combinatorial structure B4), as shown in the
previous studie$®27-28We also express it by three tetramers

pacted, and produces a zero dipole moment along the axis. IN(AA'A) in which A" differs from A by a rotation of 99about

the Cy(2) structures the top and bottom tetramers are not
symmetrically compacted, which leads to an axial dipole
moment.

the principal axis.
Cs symmetryhas symmetry order 2. Our calculation shows
that there is only one unique structure for symmeZgywhich
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Figure 6. Electronic energy level (in atomic units) diagram for a

reduced set of structures of fused cubic water dodecamer. Here reduce

means that only one structure survives at the HartFeek level of
theory (see section IlI).

has an energy 0f914.9966 au, numbered as the 71th level in
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Figure 7. Energy differenceE(N+1) — E(N) (in atomic units) as a
function of the ordering index numbBr(see columns 1 and 8 of Table
1) with 1 < N =< 90. E(N) represents one of the ordered energies for

éhe dodecamer structures.

the 9th and 10th, 45th and 46th, 49th and 50th, and 61st and
62nd levels in Table 1. Considering the real energy levels are
more complex than Figure 6, we expect more enantiomeric pairs

Table 1. The isomer includes two head-to-end octamers in the real energy levels; and therefore, a robust optically active

(C1b)"(Cyib) or three stacking tetramers (EAB).
C, symmetryis an interesting one since there are a total of

property from the dextrorotatory isomers and levorotatory
isomers in the water dodecamer.

five structures. Their energies are the highest ones at the MP2  Checking Figure 6 carefully, the lines of the energy levels

level of theory, from the 87th through the 91st in Table 1. The
87th structureC4(1), is a combination of two exactly stacked
octamers C4b), or stacked tetramers (N'N") with an energy

of —914.9875 au. The following structure, the 88thJg?2),
0.00008 au or 0.05 kcal/mol higher in energy and can be
expressed in combination symmetrZ46)(Csa)" and three
tetramers (NNN).

If the reflection operation is made on the middle tetramer of
Cy(1), then C4(3) structure is obtained with an energy of
—914.9873 au, a combinatorial symmet@s4)'(C4b)", and the
three tetrameric expression NW. If structuresCa(2) andCq(3)
are compared, the expressidgdslf)(Csa)" is found not to be
equivalent to expressionCa)'(C4sb)" because of the planar
reflections and the four axially oriented dangling hydrogens.
After a similar operation on the middle tetramer, one may have
structureCy(4) with an energy—914.9872003 au, which are
fused octamersGya)(Csa)" and stacked tetramers '(NN').

A structure not previously known i84(5) and its energy is
—914.9590 au, higher than that G(4) by 0.0282 au or 17.68
kcal/mol. Its energy is also higher than the energyglfl) by
0.0558 au or 34.98 kcal/mol, the largest energy gap for all of

are found to have some specific distributions: after a large space,
the separation of the lines becomes small and such lines become
dense until a new space appears. This observation confirms the
distributions of classes of structures given in the graph theory
in section Il. To examine the distribution of the structures, the
energy differences between two neighboring structures is
calculated and listed in Table 1 and shown in Figure 7. The
peaks indicate the energy level distributions. A higher peak
indicates a larger space between two neighboring lines or levels.
The distance between two neighboring peaks approximately
defines a band. If we choose the energy difference between two
neighboring levels to be larger than 0.0005 au, then a total of
14 bands is obtained. A relation is expected between these 14
energy level bands with the distributions of the four free
hydrogen bonds. Using graph theory and quantum chemistry
we have identified that there are seven classes for water
octamer8 If considering the dodecamer is a combination of a
cube and another tetramer based on Redfield’s graph reduced
function?® and if the dangling hydrogen atoms distribute in the
way to minimize the Coulomb repulsion among them, then we
have a total of 14 classes.

the structures. Each of its octamers cannot be stable, because |n symmetrical structures we noticed that some structures with

the middle tetramer is the reflection of not a tetramer (N) but

C4, symmetry are oriented by the free covalent hydrogen bond

the optimized (o) one as shown in Figures 1 and 4 as well as atoms, though the maximal difference of their energies is high

Table 1. Its tetrameric expression may b&NRN'.

V. Discussion

(up to 0.2687 au or 168.63 kcal/mol). The high energy is the
result of Coulomb repulsions among those pseudo free hydrogen
atoms, which are restricted to a small four-membered ring (2.77

We described optimized structures of fused cube water x 2.77 A?). Those locally stable, highly symmetrical, and

clusters (HO):2 using combined methods of quantum chemistry

calculation, graph theory, and the binary encoding technique.

Our energy optimization starts with selectedy@ayraphs under
the ice rules. At the HartregFock level of theory, we only

oriented structures might give us hints to study the conditions
of water clusters and ice growth in some specific environments
such as extreme atmospheric conditions and pressure confine-
ments. From structur€,(1), one might obtain a number of

maintain one structure and remove the remaining structures inlonger gas-phase structures ;(Ja, by stacking isochiral

a group of all isoenergetic structures (numerical error smaller tetramers. Whether or not they are stable within certain
than 108 au), and hence, a reduced set of the energetically environmental conditions, all of these need further studies with
allowed structures are obtained. Figure 6 is a diagram for the more advanced calculations and larger basis sets that are limited

energy levels of such a reduced set of unique structures. Thein our current computing capacity.

maximal difference of energies is 34.98 kcal/mol.
From the energetic analysis we find that there are totally 4
enantiomeric pairs fron€; symmetry. They are expressed in

In our study, 83 cuboidal structures generally maintain a fused
cubic framework, and 8 structures are heavily distorted. The
distorted structures may be simply seen as two loosely patterned
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Ci, 1 Cs, and 60C;. The diagram of the 91 structural energy
levels shows 14 bands which can be mapped to 14 classes of
two-colored graphs and correspond to the distributions of four
free hydrogens in light of Redfield’s graph reduced function.
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